
Higher-
order logic

Higher-order logic

• FOL only allows to quantify over variables, and
variables can only range over objects.

• HOL allows us to quantify over relations
• Example: (quantify over functions)

“two functions are equal iff they produce the same value for all
arguments”

f g (f = g) (x f(x) = g(x))

• Example: (quantify over predicates)
r transitive(r) (xyz) r(x,y) r(y,z) r(x,z))

• More expressive, but undecidable. (there isn’t an
effective algorithm to decide whether all sentences are valid)
– First-order logic is decidable only when it uses predicates with only one

argument.

Expressing uniqueness

• Sometimes we want to say that there is a single,
unique object that satisfies a certain condition

• “There exists a unique x such that king(x) is true”
– x king(x) y (king(y) x=y)
– x king(x) y (king(y) xy)
– ! x king(x)

• “Every country has exactly one ruler”
– c country(c) ! r ruler(c,r)

• Iota operator: “ x P(x)” means “the unique x such
that p(x) is true”
– “The unique ruler of Freedonia is dead”
– dead(x ruler(freedonia,x))

Notational differences

• Different symbols for and, or, not, implies, ...
–

– p v (q ^ r)
– p + (q * r)
– etc

• Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
(forall ?x (implies (and (furry ?x)

(meows ?x)
(has ?x claws))

(cat ?x)))

Situation calculus

• A situation is a snapshot of the world at an interval of time during which
nothing changes

• Every true or false statement is made with respect to a particular situation.

– Add situation variables to every predicate.

– at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in situation (i.e.,
state) s0.

– Alternatively, add a special 2nd-order predicate, holds(f,s), that means “f is true in
situation s.” E.g., holds(at(Agent,1,1),s0)

• Add a new function, result(a,s), that maps a situation s into a new situation as
a result of performing action a. For example, result(forward, s) is a function
that returns the successor state (situation) to s

• Example: The action agent-walks-to-location-y could be represented by

– (x)(y)(s) (at(Agent,x,s) onbox(s)) at(Agent,y,result(walk(y),s))

Deducing hidden properties

• From the perceptual information we obtain in
situations, we can infer properties of
locations

l,s at(Agent,l,s) Breeze(s) Breezy(l)

l,s at(Agent,l,s) Stench(s) Smelly(l)

• Neither Breezy nor Smelly need situation
arguments because pits and Wumpuses do
not move around

Deducing hidden properties II

• We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

• There are two main kinds of such rules:
– Causal rules reflect the assumed direction of causality in the

world:
(l1,l2,s) At(Wumpus,l1,s) Adjacent(l1,l2) Smelly(l2)
(l1,l2,s) At(Pit,l1,s) Adjacent(l1,l2) Breezy(l2)

Systems that reason with causal rules are called model-
based reasoning systems

– Diagnostic rules infer the presence of hidden properties
directly from the percept-derived information. We have
already seen two diagnostic rules:

(l,s) At(Agent,l,s) Breeze(s) Breezy(l)
(l,s) At(Agent,l,s) Stench(s) Smelly(l)

Representing change:
The frame problem

• Frame axioms: If property x doesn’t change as
a result of applying action a in state s, then it
stays the same.
– On (x, z, s) Clear (x, s)

On (x, table, Result(Move(x, table), s))
On(x, z, Result (Move (x, table), s))

– On (y, z, s) y x On (y, z, Result (Move (x,
table), s))

– The proliferation of frame axioms becomes very
cumbersome in complex domains

The frame problem II

• Successor-state axiom: General statement
that characterizes every way in which a
particular predicate can become true:
– Either it can be made true, or it can already be

true and not be changed:
– On (x, table, Result(a,s))

[On (x, z, s) Clear (x, s) a = Move(x, table)]
[On (x, table, s) a Move (x, z)]

• In complex worlds, where you want to reason
about longer chains of action, even these
types of axioms are too cumbersome
– Planning systems use special-purpose inference

methods to reason about the expected state of the
world at any point in time during a multi-step plan

Qualification problem

• Qualification problem:
– How can you possibly characterize every single

effect of an action, or every single exception that
might occur?

– When I put my bread into the toaster, and push
the button, it will become toasted after two
minutes, unless…
• The toaster is broken, or…

• The power is out, or…

• I blow a fuse, or…

• A neutron bomb explodes nearby and fries all electrical components, or…

• A meteor strikes the earth, and the world we know it ceases to exist, or…

Ramification problem

• Similarly, it’s just about impossible to characterize every side effect of
every action, at every possible level of detail:

– When I put my bread into the toaster, and push the button, the bread will
become toasted after two minutes, and…

• The crumbs that fall off the bread onto the bottom of the toaster over tray will also
become toasted, and…

• Some of the aforementioned crumbs will become burnt, and…

• The outside molecules of the bread will become “toasted,” and…

• The inside molecules of the bread will remain more “breadlike,” and…

• The toasting process will release a small amount of humidity into the air because of
evaporation, and…

• The heating elements will become a tiny fraction more likely to burn out the next
time I use the toaster, and…

• The electricity meter in the house will move up slightly, and…

Knowledge engineering!

• Modeling the “right” conditions and the “right” effects
at the “right” level of abstraction is very difficult

• Knowledge engineering (creating and maintaining
knowledge bases for intelligent reasoning) is an entire
field of investigation

• Many researchers hope that automated knowledge
acquisition and machine learning tools can fill the gap:
– Our intelligent systems should be able to learn about the

conditions and effects, just like we do!
– Our intelligent systems should be able to learn when to

pay attention to, or reason about, certain aspects of
processes, depending on the context!

Preferences among actions

• A problem with the Wumpus world knowledge
base that we have built so far is that it is difficult
to decide which action is best among a number of
possibilities.

• For example, to decide between a forward and a
grab, axioms describing when it is OK to move to
a square would have to mention glitter.

• This is not modular!
• We can solve this problem by separating facts

about actions from facts about goals. This way
our agent can be reprogrammed just by asking it
to achieve different goals.

Preferences among actions

• The first step is to describe the desirability of
actions independent of each other.

• In doing this we will use a simple scale: actions
can be Great, Good, Medium, Risky, or Deadly.

• Obviously, the agent should always do the best
action it can find:
(a,s) Great(a,s) Action(a,s)
(a,s) Good(a,s) (b) Great(b,s) Action(a,s)
(a,s) Medium(a,s) ((b) Great(b,s) Good(b,s))

Action(a,s)
...

Preferences among actions

• We use this action quality scale in the following way.
• Until it finds the gold, the basic strategy for our agent is:

– Great actions include picking up the gold when found and
climbing out of the cave with the gold.

– Good actions include moving to a square that’s OK and
hasn't been visited yet.

– Medium actions include moving to a square that is OK and
has already been visited.

– Risky actions include moving to a square that is not known
to be deadly or OK.

– Deadly actions are moving into a square that is known to
have a pit or a Wumpus.

Goal-based agents

• Once the gold is found, it is necessary to change
strategies. So now we need a new set of action
values.

• We could encode this as a rule:
– (s) Holding(Gold,s) GoalLocation([1,1]),s)

• We must now decide how the agent will work out a
sequence of actions to accomplish the goal.

• Three possible approaches are:
– Inference: good versus wasteful solutions

– Search: make a problem with operators and set of states

– Planning: to be discussed later

Thank You

