HIGHER-ORDER LOGIC

Higher-order logic

- FOL only allows to quantify over variables, and variables can only range over objects.
- HOL allows us to quantify over relations
- Example: (quantify over functions)
 - "two functions are equal iff they produce the same value for all arguments"

 $\forall f \forall g (f = g) \leftrightarrow (\forall x f(x) = g(x))$

• Example: (quantify over predicates)

 \forall r transitive(r) \rightarrow (\forall xyz) r(x,y) \land r(y,z) \rightarrow r(x,z))

- More expressive, but undecidable. (there isn't an effective algorithm to decide whether all sentences are valid)
 - First-order logic is decidable only when it uses predicates with only one argument.

Expressing uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition
- "There exists a unique x such that king(x) is true"
 - $\exists x \text{ king}(x) \land \forall y \text{ (king}(y) → x=y)$
 - − $\exists x \text{ king}(x) \land \neg \exists y \text{ (king}(y) \land x \neq y)$
 - $-\exists!x king(x)$
- "Every country has exactly one ruler"

- \forall c country(c) → \exists ! r ruler(c,r)

- lota operator: "i x P(x)" means "the unique x such that p(x) is true"
 - "The unique ruler of Freedonia is dead"
 - dead(\u00ed x ruler(freedonia,x))

Notational differences

- Different symbols for and, or, not, implies, ...
 - ${\subset} \bullet ~ {\sqsubset} {\lor} {\land} \Leftrightarrow \Leftarrow E ~ \forall ~ {\neg}$
 - p v (q ^ r)
 - p + (q * r)
 - etc
- Prolog

cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations

(forall ?x (implies (and (furry ?x) (meows ?x) (has ?x claws)) (cat ?x)))

Situation calculus

- A **situation** is a snapshot of the world at an interval of time during which nothing changes
- Every true or false statement is made with respect to a particular situation.
 - Add **situation variables** to every predicate.
 - at(Agent,1,1) becomes at(Agent,1,1,s0): at(Agent,1,1) is true in situation (i.e., state) s0.
 - Alternatively, add a special 2nd-order predicate, holds(f,s), that means "f is true in situation s." E.g., holds(at(Agent,1,1),s0)
- Add a new function, result(a,s), that maps a situation s into a new situation as a result of performing action a. For example, result(forward, s) is a function that returns the successor state (situation) to s
- Example: The action agent-walks-to-location-y could be represented by
 - $(\forall x)(\forall y)(\forall s) (at(Agent,x,s) \land \neg onbox(s)) \rightarrow at(Agent,y,result(walk(y),s))$

Deducing hidden properties

From the perceptual information we obtain in situations, we can infer properties of locations

 \forall I,s at(Agent,I,s) \land Breeze(s) \rightarrow Breezy(I) \forall I,s at(Agent,I,s) \land Stench(s) \rightarrow Smelly(I)

 Neither Breezy nor Smelly need situation arguments because pits and Wumpuses do not move around

Deducing hidden properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:
 - Causal rules reflect the assumed direction of causality in the world:

 $(\forall l1,l2,s)$ At(Wumpus,l1,s) \land Adjacent(l1,l2) \rightarrow Smelly(l2) $(\forall l1,l2,s)$ At(Pit,l1,s) \land Adjacent(l1,l2) \rightarrow Breezy(l2)

Systems that reason with causal rules are called **modelbased** reasoning systems

 Diagnostic rules infer the presence of hidden properties directly from the percept-derived information. We have already seen two diagnostic rules:

 $(\forall I,s) At(Agent,I,s) \land Breeze(s) \rightarrow Breezy(I)$ $(\forall I,s) At(Agent,I,s) \land Stench(s) \rightarrow Smelly(I)$ Representing change: The frame problem

- Frame axioms: If property x doesn't change as a result of applying action a in state s, then it stays the same.
 - On (x, z, s) ∧ Clear (x, s) →
 On (x, table, Result(Move(x, table), s)) ∧
 ¬On(x, z, Result (Move (x, table), s))
 - On (y, z, s) \land y \neq x \rightarrow On (y, z, Result (Move (x, table), s))
 - The proliferation of frame axioms becomes very cumbersome in complex domains

The frame problem II

- Successor-state axiom: General statement that characterizes every way in which a particular predicate can become true:
 - Either it can be made true, or it can already be true and not be changed:
 - On (x, table, Result(a,s)) \leftrightarrow [On (x, z, s) \land Clear (x, s) \land a = Move(x, table)] \land [On (x, table, s) \land a \neq Move (x, z)]
- In complex worlds, where you want to reason about longer chains of action, even these types of axioms are too cumbersome
 - Planning systems use special-purpose inference methods to reason about the expected state of the world at any point in time during a multi-step plan

Qualification problem

- Qualification problem:
 - How can you possibly characterize every single effect of an action, or every single exception that might occur?
 - When I put my bread into the toaster, and push the button, it will become toasted after two minutes, unless...
 - The toaster is broken, or...
 - The power is out, or...
 - I blow a fuse, or...
 - A neutron bomb explodes nearby and fries all electrical components, or...
 - A meteor strikes the earth, and the world we know it ceases to exist, or...

Ramification problem

- Similarly, it's just about impossible to characterize every side effect of every action, at every possible level of detail:
 - When I put my bread into the toaster, and push the button, the bread will become toasted after two minutes, and...
 - The crumbs that fall off the bread onto the bottom of the toaster over tray will also become toasted, and...
 - Some of the aforementioned crumbs will become burnt, and...
 - The outside molecules of the bread will become "toasted," and...
 - The inside molecules of the bread will remain more "breadlike," and...
 - The toasting process will release a small amount of humidity into the air because of evaporation, and...
 - The heating elements will become a tiny fraction more likely to burn out the next time I use the toaster, and...
 - The electricity meter in the house will move up slightly, and...

Knowledge engineering!

- Modeling the "right" conditions and the "right" effects at the "right" level of abstraction is very difficult
- Knowledge engineering (creating and maintaining knowledge bases for intelligent reasoning) is an entire field of investigation
- Many researchers hope that automated knowledge acquisition and machine learning tools can fill the gap:
 - Our intelligent systems should be able to learn about the conditions and effects, just like we do!
 - Our intelligent systems should be able to learn when to pay attention to, or reason about, certain aspects of processes, depending on the context!

Preferences among actions

- A problem with the Wumpus world knowledge base that we have built so far is that it is difficult to decide which action is best among a number of possibilities.
- For example, to decide between a forward and a grab, axioms describing when it is OK to move to a square would have to mention glitter.
- This is not modular!
- We can solve this problem by separating facts about actions from facts about goals. This way our agent can be reprogrammed just by asking it to achieve different goals.

Preferences among actions

- The first step is to describe the desirability of actions independent of each other.
- In doing this we will use a simple scale: actions can be Great, Good, Medium, Risky, or Deadly.
- Obviously, the agent should always do the best action it can find:

(∀a,s) Great(a,s) → Action(a,s)
(∀a,s) Good(a,s) ∧ ¬(∃b) Great(b,s) → Action(a,s)
(∀a,s) Medium(a,s) ∧ (¬(∃b) Great(b,s) ∨ Good(b,s)) → Action(a,s)

Preferences among actions

- We use this action quality scale in the following way.
- Until it finds the gold, the basic strategy for our agent is:
 - Great actions include picking up the gold when found and climbing out of the cave with the gold.
 - Good actions include moving to a square that's OK and hasn't been visited yet.
 - Medium actions include moving to a square that is OK and has already been visited.
 - Risky actions include moving to a square that is not known to be deadly or OK.
 - Deadly actions are moving into a square that is known to have a pit or a Wumpus.

Goal-based agents

- Once the gold is found, it is necessary to change strategies. So now we need a new set of action values.
- We could encode this as a rule:

- $(\forall s)$ Holding(Gold,s) \rightarrow GoalLocation([1,1]),s)

- We must now decide how the agent will work out a sequence of actions to accomplish the goal.
- Three possible approaches are:
 - Inference: good versus wasteful solutions
 - Search: make a problem with operators and set of states
 - Planning: to be discussed later

Thank You